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-------------------------------------------------------ABSTRACT-------------------------------------------------------------
In this era of Cloud Computing and Service Architecture, it is expected that web services will proliferate the 
current market and business will expose their web service�s as B2B, C2B, E2E and C2C service componets, 
many web services offer the similar services, and the clients application will demand more value added  
services and informative services rather than those offered by single entity ,or  isolated web services. 
Synthesis of Service Semantics with high quality is prominent and in high demand, Internet based applications 
share webservices and offer services as data pipelines and social computing. The client applications are 
experiencing cost and quality intensive competition to select service portfolio and create semantics service 
composition, among numerous possible plans, that satisfy their quality-of-service (QoS) requirements. Typical 
QoS attributes associated with a semantic fabric services are the consumption cost and time, availability of 
services, dynamic runtime service execution rate, service and entity reputation, and web trends of service 
frequency and performance payload support. This paper describes the service composition architecture and 
webservice composition algorithm based on combinatorial and Poisson distribution. As mathematical and 
implementation framework of the service algorithm maintains the high standard of service QoS  composition 
in a business portfolio of service category and assists the business entity and client application to have better 
service selection and QoS of request and response. �
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I. INTRODUCTION  

Cloud computing and Service-Oriented 
Architecture (SOA) provides a flexible systems 
framework for service composition and QoS 
attributes. Using standard-based protocols (such as 
SOAP and WSDL), composite services can be 
constructed by integrating systems atomic services 
or business functions that are independent. 
Algorithms are required to perform service selection 
with various QoS levels as per the contractual and 
context based performance attributes. This paper 
describes the Service Architecture to facilitate the 
best selection of QoS-based services and optimal 
path for execution. The objective of service selection 
is to maximize an application-specific business and 
resource consumption functions under precise QoS 
constraints. The combinatorial model defines the 
problem as a multi-dimension statistical distribution. 
Runtime dynamic selection of Web services is 
important for building modular and de-coupled 

service oriented applications. An abstract layer is 
proposed to describe the required services at design-
time, and maps service offerings that are located at 
runtime. With the growing number of Web services 
that provide the same functionality but differ in 
quality parameters (e.g., availability, response time), 
a decision needs to be made on which services 
should be selected such that the user�s end-to-end 
QoS requirements are satisfied. Although very 
efficient, local selection strategy fails short in 
handling global QoS requirements. Solutions based 
on global optimization, on the other hand, can handle 
global constraints, but their poor performance 
renders them inappropriate for applications with 
dynamic and realtime requirements. In this article we 
address this problem and propose a hybrid solution 
that combines global optimization with local 
selection techniques to benefit from the advantages 
of both worlds. The proposed solution consists of 
two steps: first, we use mixed integer programming 
(MIP) to find the optimal decomposition of global 
QoS constraints into local constraints. Second, we 
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use distributed local selection to find the best Web 
services that satisfy these local constraints. The 
results of experimental evaluation indicate that our 
approach significantly outperforms existing solutions 
in terms of computation time while achieving close-
to-optimal results. QoS-aware service composition is 
a key requirement in Service Oriented Computing 
(SOC) since it enables fulfilling complex user tasks 
while meeting Quality of Service (QoS) constraints. 
A challenging issue towards this purpose is the 
selection of the best set of services to compose, 
meeting global QoS constraints imposed by the user, 
which is known to be a NP-hard problem. This 
challenge becomes even more relevant when it is 
considered in the context of dynamic service 
environments. Indeed, two specific issues arise. 
First, required tasks are fulfilled on the y, thus the 
time available for services' selection and 
composition is limited. Second, service compositions 
have to be adaptive so that they can cope with 
changing conditions of the environment. In this 
paper, we present an efficient service selection 
algorithm that provides the appropriate ground for 
QoS-aware composition in dynamic service 
environments. Our algorithm is formed as a guided 
heuristic. The paper also presents a set of 
experiments conducted to evaluate the efficiency of 
our algorithm, which shows its timeliness and 
optimality. 

With the development of the semantic web (Mao, 
2010) and Web Ontology Language (OWL) (Martin 
et al., 2007; Hasany et al., 2010), we hope to utilize 
the semantic web technology to integrate 
intelligently all kinds of web services, thus 
producing semantic web services. The automatic 
composition of semantic web services is one of the 
key technologies in integrating web services and it is 
much concerned by many researchers form the 
beginning. The methods for web service composition 
are dependent on specific framework of web services 
in a certain degree. The typical framework of web 
services is OWL-S which is based on OWL and 
OWL is on the basis of description logic (Horrocks 
et al. 2003). Description logic is effective in 
representing and reasoning static knowledge. 
However, description logic cannot represent and 
reason dynamic knowledge such as behaviors and 
services. So, Dynamic Description Logic (DDL) (Shi 
et al., 2004) is presented by combining description 
logic ALC, dynamic logic and action theory. The 
description ability of DDL is over logic and system 
based on proposition language in describing actions. 
The problems about reasoning are all decidable in 

reasoning actions. All the problems about reasoning 
actions can be transformed to the satisfiable 
problems. So, they can be reasoned based on the 
decision algorithm in absence of information. In 
sum, DDL is more applicable for describing 
semantic web by combining knowledge of static 
field based on description logic and action 
knowledge of dynamic field. 

At present, the service composition is mainly the 
following several methods: 

� The service composition methods based on type 
matching of input and output parameters 

A solution based on the DAML-S (Paolucci et al., 
2002) is proposed. The overlap relationship of the 
types of parameters is studied and the partial 
matching algorithm is proposed (Li and 
Horrocks,  2003). For large number of services, a 
synthetic testbed (Constantinescu et al., 2004) is 
proposed that can be used for simulating large 
deployments of services and also for generating 
service composition problems. 

� The service composition methods based on 
artificial intelligence planning 

The pioneer of such approaches (McIlraith and Tran, 
2002) takes web services as the actions of AI 
planning. Therefore, web service composition 
process is the process of generating planning. The 
adopted planning algorithm is improved based on 
logic program Golog. The service composition based 
on HTN (Hierarchical Task Network) planning 
algorithm (Sirin et al., 2004) is proposed.   

As the description logic can effectively express and 
reason knowledge of static domain and cannot 
handle the dynamic knowledge such as actions and 
services, dynamic description logic DDL (Shi et al., 
2004) is put forward and the service description 
method based on DDL (Shi and Chang, 2008) is 
proposed. And then the service composition 
algorithm based on DDL (Peng et al., 2008) is 
presented. But because the algorithm needs to 
enumerate all composition sequences, efficiency is 
difficult to be guaranteed. 

In this study, DDL is taken as service description 
framework. For services which are performed in 
sequence, a fast and effective service composition 
algorithm is presented which takes full advantage of 
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DDL describing dynamic run of services. This 
method utilizes the partial order relationship between 
services dividing the service composition into two 
stages: on the first stage, the partial order diagram is 
constructed on the registration servicer; on the 
second stage fast service composition is 
implemented based on the partial order diagram to 
meet the requirement of users. To achieve the goal, 
First inclusion operation on sets of DDL is extended, 
the partial order relationship between services is 
defined based on extended inclusion operation and 
the satisfiability problem of DDL formula is 
transformed to operations between sets. Second, the 
fast composition algorithm is proposed based on 
DDL and  the correctness and time complexity is 
analyzed. Finally, the algorithm of generating the 
partial order diagram between services is proposed 
and the time complexity of the algorithm is 
analyzed. By analysis and verification, the method of 
service composition designed in this study is 
implemented in linear time complexity greatly 
reducing response time of the system. 

A. Semantics and Service Fabric DDLs 

A Semantic Service Oriented Architecture (SSOA) is 
an architecture that allows for scalable and 
controlled Enterprise Application Integration 
solutions.[1] SSOA describes a sophisticated 
approach to enterprise-scale IT infrastructure. It 
leverages rich, machine-interpretable descriptions of 
data, services, and processes to enable software 
agents to autonomously interact to perform critical 
mission functions.. 

Web Semantics is a knowledge-intensive and 
intelligent service Web. These service areas include: 
knowledge technologies, ontology, agents, databases 
and the semantic grid, obviously disciplines like 
information retrieval, language technology, human-
computer interaction and knowledge discovery are of 
major relevance as well. All aspects of the Semantic 
Web development are covered in this paper. This 
paper presents theories, methods and experiments 
from different business areas in order to deliver 
innovative semantic methods and applications. 

Some definitions related to Semantics Services are 
given as follow: 

Definition 1: An atomic Service action with request 
and response http arguments is the form: 
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where, k   is a atomic action, and has a finite 
sequence of all individual variables in n  and k  
interface of the atomic action of events, P is a set of 
preconditions & postcondition which must be 
satisfied before  a service request/ response action 
are performed. 

Definition 2: Formulas in Abstract Service Layer is 
defined and generated as follows: 
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where, j  is an individual service component ,  r  is 
an entity  relationship and n  is an action of events. 

Definition 3: An action of Service descriptor is 
defined as follows: 
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where, θ  is an atomic action. 

The service description in OWL-S and the 
transformation method from OWL-S description to 
DDL description are given in the following. 
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In OWL, the function of an service is described by 
Input, Output, Precondition and Effect (IOPE) which 
is denoted by S = {I, O, P, E}. Let S.I, S.O, S.P and 
S.E be respectively input, output, precondition 
formula set and effect formula set of service S. If 
α(V1,�, Vn) = (P, E) is an atomic action of DDL, S 
can be described as α = S, where the action name is 
service name. P = S.I ,S.P is the premise formula of 
actions which is the union of input formula set and 
precondition formula set of service S; E = S.O and 
S.E is the result formula of actions which is the 
union  of output formula set and effect formula set of 
service S.  
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II. METHODOLOGY  

A. Service Composition 
The service-oriented computing environment and 
supported infrastructure serves the high quality 
services and Orchestrated and standardized Web 
service technologies provide a promising solution for 
the integration of business applications that are using 
different technologies, this build the platform where 
software can be exposed as a service and business 
domain can be exposed as a services and there is no 
need to redevelop same business function in other 
projects, this is purely  new value-added services 
that can leverage legacy application and 

infrastructure services. As the Organization are 
acquired and merged there is high demand to use 
each other IT & Business Capabilities so there is 
growing interest in the development of ad-hoc 
service composition in the areas of business domains 
such as Healthcare, Telecommunication, Insurance 
and Financial systems, as well as in web & game 
based rich multimedia applications. As we 
experience the web service growth that provides 
more or less same functionality but differ in 
performance attributes, quality service attributes, the 
service composition comes under play to aid the 
criteria of service selection and consumptions which 
are highly critical for business domain support 
model and adhere to non-functional SLA agreements 
and business portfolio contracts.  
 

  
 

Fig. 1. Architecture overview of the orchestration of web service and service fabric composition. 
 
 
The business feature provider defines the composite 
service model and  defines the field structures as per 
the client application requirement to suite the best 
business outcome. Once the service is defined we 
can use workflow language such as Webservice 
business extraction language (WS-BPEL) or YAWL 
Workflows or OWL-S to model the abstract service 
layer for business composite services. UDDI is being 
used to provide the service registry that is used to 
locate the webservices and provide the semantic 
services for functional use. Based on the outcome of 
service selection or business or nonfunctional 
candidate services are categorized for each business 

feature, context aware QOS service selection and 
consumption is based under the selection criteria and 
context aware QoS and service contracts. Lets take 

business webservices that are defined by ( )f x
�

and 
( )g x
�

functions on subset of n
� . 

 

We say ( )f x
�

 is ( ( )O g x
�

  as x → ∞
�

  if and only if  

0C M∃ ∃ >  such that 
( ) ( )f x C g x≤
� �

 for all x
�

, for 
example below statement  

2 3( , ) ( , )f n m n m O n m= + +  as ,n m→∞     
asserts that there exist constants C  and M  such that  
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, : ( , ) ( ),n m M g n m C n m∀ > ≤ +   
where ( , )g n m is defined by 

 
2 3( , ) ( , )f n m n m g n m= + +   

 
Note that this definition allows all of the service 
attributes of x

�

to increase to infinity. In particular the 
statement 

( , ) ( )mf n m O n=  as ,n m → ∞   
(i.e., ( ...)C M n m∃ ∃ ∀ ∀  ) is quite different from  

: ( , ) ( )mm f n m O n∀ =  as ,n m → ∞   
(i.e., ( ...)m C M n∀ ∃ ∃ ∀ ) 
 
Above illustration express the service attributes that 
can be n- times large in production environment 
which can be supported by high scale current 
available infrastructure but there is always a limit in 
computational systems to accept the payload and 
provide the performance results. 
 

B. QoS Contraints and Distribution of service 
component in Extended Enterprise Architecture 

End users specify their QoS requirements, such as 
Average request and response time, 
throughput/bandwidth, maximum computational and 
resource usage cost. Based on above said QoS 
criteria users consume candidate services but 
internally services are orchestrated wrt business 
features and tasks oriented workflow and each 
service component maintains the stack of context 
and contract aware QoS with calling functions/ 
services. Selecting the optimal service from the 
service registry for each component function is 
nontrival as the matrix of service composition could 
be very large. This request and response service 
scenario need to be solved better available solution, 
in this paper this problem is looked from the point of 
combinatorial optimization that consists of finding 
an optimal service from a finite set of available 
service objects in the service registry. As the dataset 
could be very large and exhaustive search might not 
be feasible to perform and could lead into 
performance barrier. It operates on the service 
business function domain   of those optimization 
problems ,in which the set of services of adequate 
service QoS is discrete or can be reduced to discrete, 
and this will make it easier to search best possible 
service. 
 

C. Mathematical framerwork of Service 
Orchestration 

Below listed mathematical proof explains the 
distribution of services and best possible service 
solution wrt contractual QoS Constraints. 
 
 The marginal distribution of services cycle counts 
provides a formula for the service component joint 

distribution of the cycle counts ,n
jC  we find the 

service component distribution of 
n
jC  using a 

combinatorial approach combined with the 
inclusion-exclusion formula. 
 
Lemma  1.1.   For 1 ,j n≤ ≤  
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Proof.     Consider the available registered Services 
in UDDI Registry set I  of all possible cycles of 
length ,j  formed with business component elements 
chosen from set of available service components 
{ }1,2,... ,n  so that [ ]/j jI n= . For each ,Iα ∈  

consider the �property� Gα  of having ;α  that is,  

Gα is the set of permutations nSπ∈  such that α  is 
one of the component cycles of .π  We then have 

( )!,G n jα = − since the elements of { }1,2,...,n  
not in α  must be permuted among themselves. To 
use the inclusion-exclusion formula we need to 
calculate the term ,rS  which is the sum of the 
probabilities of the r -fold intersection of properties, 
summing over all sets of r distinct properties. There 
are two cases to consider. If the r properties are 
indexed by r cycles having no business elements in 
common, then the intersection specifies how rj  
elements are moved by the permutation, and there 
are ( )!1( )n rj rj n− ≤  permutations in the 

intersection. There are [ ] / ( !)rj rn j r  such 
intersections. For the other case, some two distinct 
properties name some element in common, so no 
permutation can have both these properties, and the 
r -fold intersection is empty. Thus 
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Which simplifies to (1.1) Returning to the original 
hat-check problem, we substitute j=1 in (1.1) to 
obtain the distribution of the number of fixed points 
of a random permutation. For 0,1,..., ,k n=   
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The service workflow joint moments of the first b  
counts ( ) ( )

1 ,...,n n
bC C  can be obtained directly from 

(1.2) and (1.3) by setting 1 ... 0b nm m+ = = =   
 

The limit distribution of service cycle counts 
follows immediately from Lemma 1.1 that for each 
fixed ,j  as ,n → ∞  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j
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So that ( )n
jC converges in distribution to a random 

variable jZ  having a Poisson distribution with mean 

1/ ;j  we use the notation ( )n
j d jC Z→  where 

(1/ )j oZ P j∼   to describe this. Infact, the limit 
random variables are independent. 
 
 
Above listed theorem explicit defines the best 
distribution of service components when the payload 
is large and also to adhere with QoS constraints and 
provide optimal service performance. 
 

 
 
Fig. 2. Illustrates the service orchestration and 
composition in enterprise architecture and poisson 
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distribution and error rate is approximation is 
calculated. 
 
Service Localization and Service Selection 
Strategy. The service local and global selection 
approach is especially useful for enterprise wide 
distributed system environments where central 
service bus maintains QoS administration and 
management and groups of candidate Web services 
are managed by distributed service hubs and stack of 
composite service portfolio. The objective function 
is to select optimal service from available group of 
service candidates and the services are independent 
in cluster of service offering hub. Using a 
Combinatorial  resource attributes and features, the 
values of the different QoS criteria are mapped to a 
specified resource attribute and the service with 
optimal capability is selected. This approach is very 
efficient in terms of CPU cycle and resource usage, 
as the payload and response time complexity of the 
local optimization approach is O(l), where l is the 
number of service candidates in each group. Even if 
the approach is useful in decentralized environments, 
local selection strategy is not suitable for QoS-based 
service composition, with end-to-end constraints 
(e.g., maximum total price), since such global 
constraints cannot be verified locally. 
 
Global Optimization. The global optimization 
approach was put forward as a solution to the QoS-
aware service composition problem [Zeng et al. 
2003, 2004; Ardagna and Pernici 2005; Ardagna and 
Pernici 2007; Kritikos and Plexousakis 2009]. This 
approach aims at solving the problem on the 
composite service level. The work of Zeng et al. 
[2003, 2004] focuses on dynamic and quality-driven 
selection of services. The authors use global 
planning to find the best service components for the 
composition. They use mixed integer programming 
techniques [Nemhauser and Wolsey 1988] (MIP) to 
find the optimal selection of component services. 
Similar to this approach Ardagna et al. [2005, 2007] 
extend the linear programming model to include 
local constraints. In their model, global constraints 
are specified by the end-user on the composition 
level, while local constraints can be specified by the 
designer of the composition on the component 
services� level. Unlike this approach, our proposed 
solution decomposes all end-users� global 
constraints into local constraints. Our solution can 
also easily handle local constraints given by the 
designer of the composition. Another difference 
between the two approaches is that, in our approach, 
mixed-integer programming is applied for the 
decomposition of the constraints and not for the 

selection of the services. As we discuss later in 
Section 4 and Section 5, the number of random 
variables in our model is much smaller than the 
number of random variables in the  other approach, 
which makes our model more efficient in terms of 
computation time. Kritikos and Plexousakis [2009] 
claim that mixed-integer programming should be 
used as a matchmaking technique instead of 
constrained programming (CP) and provide 
experimental results proving it. Zhai et al. [2009] 
propose a solution for repairing failed service 
compositions by replacing the failed services only 
and reconfiguring the composition in a way that still 
meets the users� end-to-end QoS requirements. The 
reconfiguration of the composition and the 
suggestion of new services is based on MIP. 
Generally, MIP methods are very effective when the 
size of the problem is small. However, these 
methods suffer from poor scalability due to the 
exponential time complexity of the applied search 
algorithms [Maros 2003]. Already in larger 
enterprises and even more in open service 
infrastructures with a few thousand services, the 
response time for a service composition request 
could already be out of the real-time requirements.  
 
Heuristic Solutions. As discussed earlier, the 
problem of QoS-aware service selection can be 
modeled as a multi-dimensional multiple-choice 
knapsack problem (MMKP). In the MMKP problem, 
a set of groups of items, where each item has a profit 
value and consumes some resources, exist. The goal 
of this problem is to select exactly one item from 
each group such that the total profit value is 
maximized under some constraints on total resource 
consumption. The groups and items in this problem 
correspond to the service classes and the candidate 
services in theWeb service scenario, respectively. 
The profit value of an item corresponds to the utility 
value of a Web service and the constraints on the 
resource consumption correspond to the QoS 
constraints. There exist a number of heuristics in the 
literature for solving the knapsack problem in 
general and the MMKP variant of this problem in 
particular. In Khan [1998] a heuristic HEU for 
solving the MMKP was presented. HEU uses a 
measurement called aggregate resource consumption 
to decide which item from each group should be 
upgraded in each round of selection. In Akbar et al. 
[2001] a modified version of HEU, M-HEU called 
was presented, where a preprocessing step to find a 
feasible solution and a postprocessing step to 
improve the total value of the solution with one 
upgrade (i.e., item selection that increases the total 
profit value) followed by one or more downgrades 
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(i.e., item selection that decreases the total profit 
value) were added. In Akbar et al. [2006] the authors 
propose another heuristic, C-HEU, for solving the 
MMKP problem and evaluating its performance and 
optimality against several heuristics, including the 
M-HEU algorithm. The results of their evaluation 
show that C-HEU outperforms MHEU in terms of 
computation time. However, the experiments also 
show that M-HEU produces the nearest to the 
optimal solution among all the heuristics,while the 
optimality of C-HEU decreases as the number of 
items in each group increases. Furthermore, the 
results show that the C-HEU algorithm performs 
better in systems where the objective value to be 
maximized (i.e., the utility value in the Web service 
scenario) is not proportional to the resource 
requirements (i.e., the QoS values of Web services). 
Since the utility value of a given Web service is 
proportional to the QoS level of the service, the C-
HEU algorithm is not applicable to the QoS-aware 
service selection problem. A modified version of the 
M-HEU algorithm, called WS-HEU, designed for 
the QoSaware service selection problem was 
proposed in Yu et al. [2007]. The authors propose 
two models for the QoS-based service composition 
problem: (1) a combinatorial model and (2) a graph 
model. A heuristic algorithm is introduced for each 
model: the WSHEU algorithm for the combinatorial 
model and the MCSP-K for the graph model. The 
time complexity of WS-HEU is polynomial, whereas 
the complexity of MCSP-K is exponential. Despite 
the significant improvement of these algorithms 
compared to exact solutions, both algorithms do not 
scale with respect to an increasing number of Web 
services and remain out of the real-time 
requirements. In our experimental evaluation, which 
we present in Section 5.2, we compare our hybrid 
approach against the WS-HEU algorithm. The 
results indicate the the hybrid approach outperforms 
the WS-HEU. Moreover, the WS-HEU algorithm is 
not suitable for the distributed setting of Web 
services. This is due to the fact that WS-HEU 
(following the originalM-HEU algorithm) starts with 
a preprocessing step for finding an initial service 
combination that satisfies all constraints but is not 
necessarily the best solution, and improves this 
solution in several rounds of upgrades and 
downgrades of one of the selected component 
services. Applying this algorithm in a distributed 
setting where the QoS data of the different service 
classes is managed by distributed service brokers 
would cause very high communication costs among 
the brokers to find the best composition. The hybrid 
approach, we propose in this article solves the 

composition problem more efficiently and fits the 
distributed environment of Web services well. 
 

D. Constraints and Criteria for Quality of Services 
In our study we consider quantitative nonfunctional 
properties of Web services, which can be used to 
describe the quality criteria of a Web service [Zeng 
et al. 2003; Liu et al. 2004]. These can include 
generic QoS attributes like response time, 
availability, price, reputation and so on, as well as 
domain-specific QoS attributes like bandwidth for 
multimedia Web services as long as these attributes 
can be quantified and represented by real 
numbers.We use the vector Qs = {q1(s), . . . , qr(s)} 
to represent the r QoS attributes of service s, where 
the function qi(s) determines the value of the ith 
quality attribute of s. The values of these QoS 
attributes can either be collected from service 
providers directly (e.g., price), recorded from 
previous execution monitoring (e.g., response time) 
or from user feedbacks (e.g., reputation) [Liu et al. 
2004]. The set of QoS attributes can be divided into 
two subsets: positive and negative QoS attributes. 
The values of positive attributes need to be 
maximized (e.g., throughput and availability), 
whereas the values of negative attributes need to be 
minimized (e.g., price and response time). For the 
sake of simplicity, in this article we consider only 
negative ares (positive attributes can be easily 
transformed into negative overs by multiplying their 
values by −1). 
 

E. QoS Computation of Composite Services 
In our previous work [Alrifai and Risse 2009] we 
focused on sequential compositions. In the present 
work, we extend the QoS computation model to 
support nonsequential compositions. More 
specifically, in this study we consider the following 
four elementary composition constructs, which can 
be used for building more complex compositions. 
(1) Sequential. A sequence of services {s1, . . . , sn} 
are executed in a strict sequential order one after 
another. 
(2) Loop. A block of one or more services is 
executed repeatedly up to a maximum number of k 
executions. The aggregated QoS values of a loop 
construct is computed based on the worst-case 
scenario, where the number of iterations equals k. 
(3) Parallel (and split/and join). Multiple services 
{s1, . . . , sn} are executed concurrently and merged 
synchronization. 
(4) Conditional (exclusive split/exclusive join). A set 
of services {s1, . . . , sn} are associated with a logical 
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condition, which is evaluated at runtime and, based 
on its outcome, one service is executed. The 
estimated QoS values of a conditional construct are 
the worst values of the services {s1, . . . , sn}. For 
example, the estimated execution price of the 
conditional construct is computed as the price of the 
most expensive service among the services {s1, . . . , 
sn}. The QoS vector for a composite service CS with 
CS = {s1, . . . , sn} is defined as QCS = {q1(CS), . . . 
, qr (CS)}, where qi(CS) is the estimated end-to-end 
value of the ith QoS attribute. The value of qi(CS) is 
computed by aggregating the QoS values of the 
component services {s1, . . . , sn}. Depending on the 
QoS attribute and the composition pattern, there can 
be three different types of aggregation relations: (1) 
summation, (2) product or (3) minimum/maximum 
relations. Table I shows examples of such 
aggregation functions. In this example, we consider 
four different QoS attributes.  
�Response Time: is the average execution time of 
the service and is measured by the time between 
sending a request and receiving a response. 
�Price: is the amount of money the requester has to 
pay for using the service.  
�Availability: is the probability that the service is 
accessible. This is usually measured by the 
percentage of the service up-time in a given period. 
The aggregated availability value of a composition is 

measured by the probability that all composed 
services are available at execution time, which is 
usually computed by the product of the individual 
probabilities. 
�Throughput: is the number of requests the service 
can process per second. The overall throughput of a 
composition is then determined by the lowest 
throughput value of the composed services. 
 
 
The aggregation function of each of these attributes 
is shown for each of the four composition constructs 
mentioned above. Notice that in the conditional 
construct, only one branch is executed at runtime, 
which is not known a priori. Therefore, we consider 
the worst-case scenario for estimating the QoS value 
of the conditional construct. For example, the 
estimated response time (or price) of a conditional 
construct that consists of n branches (such as the one 
shown in Figure 2) is the maximum response time 
(or price) among the n component services, that is, 
maxnj =1 q(sj ). Similarly, for the availability (or 
throughput) attribute, we use the minimum value 
among the nservices,that is, minnj =1 q(sj ). 
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Fig. 1. Architecture overview of the orchestration of web service and service fabric composition. 
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