
Int. J. Advanced Networking and Applications 1534
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

Combinatorial Optimization of QoS Service
Architecture

Akash K Singh, PhD
IBM Corporation, Sacramento, USA

Email : akashs@us.ibm.com

---ABSTRACT---
In this era of Cloud Computing and Service Architecture, it is expected that web services will proliferate the
current market and business will expose their web service�s as B2B, C2B, E2E and C2C service componets,
many web services offer the similar services, and the clients application will demand more value added
services and informative services rather than those offered by single entity ,or isolated web services.
Synthesis of Service Semantics with high quality is prominent and in high demand, Internet based applications
share webservices and offer services as data pipelines and social computing. The client applications are
experiencing cost and quality intensive competition to select service portfolio and create semantics service
composition, among numerous possible plans, that satisfy their quality-of-service (QoS) requirements. Typical
QoS attributes associated with a semantic fabric services are the consumption cost and time, availability of
services, dynamic runtime service execution rate, service and entity reputation, and web trends of service
frequency and performance payload support. This paper describes the service composition architecture and
webservice composition algorithm based on combinatorial and Poisson distribution. As mathematical and
implementation framework of the service algorithm maintains the high standard of service QoS composition
in a business portfolio of service category and assists the business entity and client application to have better
service selection and QoS of request and response. �

Keywords- Web service composition; Quality-of-service (QoS); QoS-oriented composition algorithm;
Combinatorial Optimization and Statistical Analysis; Web service composition architecture

Date of Submission : July 05, 2012 Date of Acceptance : August 11, 2012

I. INTRODUCTION

Cloud computing and Service-Oriented
Architecture (SOA) provides a flexible systems
framework for service composition and QoS
attributes. Using standard-based protocols (such as
SOAP and WSDL), composite services can be
constructed by integrating systems atomic services
or business functions that are independent.
Algorithms are required to perform service selection
with various QoS levels as per the contractual and
context based performance attributes. This paper
describes the Service Architecture to facilitate the
best selection of QoS-based services and optimal
path for execution. The objective of service selection
is to maximize an application-specific business and
resource consumption functions under precise QoS
constraints. The combinatorial model defines the
problem as a multi-dimension statistical distribution.
Runtime dynamic selection of Web services is
important for building modular and de-coupled

service oriented applications. An abstract layer is
proposed to describe the required services at design-
time, and maps service offerings that are located at
runtime. With the growing number of Web services
that provide the same functionality but differ in
quality parameters (e.g., availability, response time),
a decision needs to be made on which services
should be selected such that the user�s end-to-end
QoS requirements are satisfied. Although very
efficient, local selection strategy fails short in
handling global QoS requirements. Solutions based
on global optimization, on the other hand, can handle
global constraints, but their poor performance
renders them inappropriate for applications with
dynamic and realtime requirements. In this article we
address this problem and propose a hybrid solution
that combines global optimization with local
selection techniques to benefit from the advantages
of both worlds. The proposed solution consists of
two steps: first, we use mixed integer programming
(MIP) to find the optimal decomposition of global
QoS constraints into local constraints. Second, we

Int. J. Advanced Networking and Applications 1535
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

use distributed local selection to find the best Web
services that satisfy these local constraints. The
results of experimental evaluation indicate that our
approach significantly outperforms existing solutions
in terms of computation time while achieving close-
to-optimal results. QoS-aware service composition is
a key requirement in Service Oriented Computing
(SOC) since it enables fulfilling complex user tasks
while meeting Quality of Service (QoS) constraints.
A challenging issue towards this purpose is the
selection of the best set of services to compose,
meeting global QoS constraints imposed by the user,
which is known to be a NP-hard problem. This
challenge becomes even more relevant when it is
considered in the context of dynamic service
environments. Indeed, two specific issues arise.
First, required tasks are fulfilled on the y, thus the
time available for services' selection and
composition is limited. Second, service compositions
have to be adaptive so that they can cope with
changing conditions of the environment. In this
paper, we present an efficient service selection
algorithm that provides the appropriate ground for
QoS-aware composition in dynamic service
environments. Our algorithm is formed as a guided
heuristic. The paper also presents a set of
experiments conducted to evaluate the efficiency of
our algorithm, which shows its timeliness and
optimality.

With the development of the semantic web (Mao,
2010) and Web Ontology Language (OWL) (Martin
et al., 2007; Hasany et al., 2010), we hope to utilize
the semantic web technology to integrate
intelligently all kinds of web services, thus
producing semantic web services. The automatic
composition of semantic web services is one of the
key technologies in integrating web services and it is
much concerned by many researchers form the
beginning. The methods for web service composition
are dependent on specific framework of web services
in a certain degree. The typical framework of web
services is OWL-S which is based on OWL and
OWL is on the basis of description logic (Horrocks
et al. 2003). Description logic is effective in
representing and reasoning static knowledge.
However, description logic cannot represent and
reason dynamic knowledge such as behaviors and
services. So, Dynamic Description Logic (DDL) (Shi
et al., 2004) is presented by combining description
logic ALC, dynamic logic and action theory. The
description ability of DDL is over logic and system
based on proposition language in describing actions.
The problems about reasoning are all decidable in

reasoning actions. All the problems about reasoning
actions can be transformed to the satisfiable
problems. So, they can be reasoned based on the
decision algorithm in absence of information. In
sum, DDL is more applicable for describing
semantic web by combining knowledge of static
field based on description logic and action
knowledge of dynamic field.

At present, the service composition is mainly the
following several methods:

� The service composition methods based on type
matching of input and output parameters

A solution based on the DAML-S (Paolucci et al.,
2002) is proposed. The overlap relationship of the
types of parameters is studied and the partial
matching algorithm is proposed (Li and
Horrocks, 2003). For large number of services, a
synthetic testbed (Constantinescu et al., 2004) is
proposed that can be used for simulating large
deployments of services and also for generating
service composition problems.

� The service composition methods based on
artificial intelligence planning

The pioneer of such approaches (McIlraith and Tran,
2002) takes web services as the actions of AI
planning. Therefore, web service composition
process is the process of generating planning. The
adopted planning algorithm is improved based on
logic program Golog. The service composition based
on HTN (Hierarchical Task Network) planning
algorithm (Sirin et al., 2004) is proposed.

As the description logic can effectively express and
reason knowledge of static domain and cannot
handle the dynamic knowledge such as actions and
services, dynamic description logic DDL (Shi et al.,
2004) is put forward and the service description
method based on DDL (Shi and Chang, 2008) is
proposed. And then the service composition
algorithm based on DDL (Peng et al., 2008) is
presented. But because the algorithm needs to
enumerate all composition sequences, efficiency is
difficult to be guaranteed.

In this study, DDL is taken as service description
framework. For services which are performed in
sequence, a fast and effective service composition
algorithm is presented which takes full advantage of

Int. J. Advanced Networking and Applications 1536
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

DDL describing dynamic run of services. This
method utilizes the partial order relationship between
services dividing the service composition into two
stages: on the first stage, the partial order diagram is
constructed on the registration servicer; on the
second stage fast service composition is
implemented based on the partial order diagram to
meet the requirement of users. To achieve the goal,
First inclusion operation on sets of DDL is extended,
the partial order relationship between services is
defined based on extended inclusion operation and
the satisfiability problem of DDL formula is
transformed to operations between sets. Second, the
fast composition algorithm is proposed based on
DDL and the correctness and time complexity is
analyzed. Finally, the algorithm of generating the
partial order diagram between services is proposed
and the time complexity of the algorithm is
analyzed. By analysis and verification, the method of
service composition designed in this study is
implemented in linear time complexity greatly
reducing response time of the system.

A. Semantics and Service Fabric DDLs

A Semantic Service Oriented Architecture (SSOA) is
an architecture that allows for scalable and
controlled Enterprise Application Integration
solutions.[1] SSOA describes a sophisticated
approach to enterprise-scale IT infrastructure. It
leverages rich, machine-interpretable descriptions of
data, services, and processes to enable software
agents to autonomously interact to perform critical
mission functions..

Web Semantics is a knowledge-intensive and
intelligent service Web. These service areas include:
knowledge technologies, ontology, agents, databases
and the semantic grid, obviously disciplines like
information retrieval, language technology, human-
computer interaction and knowledge discovery are of
major relevance as well. All aspects of the Semantic
Web development are covered in this paper. This
paper presents theories, methods and experiments
from different business areas in order to deliver
innovative semantic methods and applications.

Some definitions related to Semantics Services are
given as follow:

Definition 1: An atomic Service action with request
and response http arguments is the form:

[/]
()

0
[] (1)

! !

k ln j k
n l

j
l

j jP C k
k l

− −−

=

= = −∑

where, k is a atomic action, and has a finite
sequence of all individual variables in n and k
interface of the atomic action of events, P is a set of
preconditions & postcondition which must be
satisfied before a service request/ response action
are performed.

Definition 2: Formulas in Abstract Service Layer is
defined and generated as follows:

[] 1 1()!1() 1()
! ! !

rj

r r r
nS n rj rj n rj n
j r n j r

= − ≤ × = ≤

where, j is an individual service component , r is
an entity relationship and n is an action of events.

Definition 3: An action of Service descriptor is
defined as follows:

1 1

1
exp [log(1)]

i

d i d i d
n

θ θ θ− −

≥

 + − 
 
∑

where, θ is an atomic action.

The service description in OWL-S and the
transformation method from OWL-S description to
DDL description are given in the following.

0
0 0

[][] 1
[]
bn

b
r n

P T n rP T r
P T n≥ +

 = −= − = 
∑

In OWL, the function of an service is described by
Input, Output, Precondition and Effect (IOPE) which
is denoted by S = {I, O, P, E}. Let S.I, S.O, S.P and
S.E be respectively input, output, precondition
formula set and effect formula set of service S. If
α(V1,�, Vn) = (P, E) is an atomic action of DDL, S
can be described as α = S, where the action name is
service name. P = S.I ,S.P is the premise formula of
actions which is the union of input formula set and
precondition formula set of service S; E = S.O and
S.E is the result formula of actions which is the
union of output formula set and effect formula set of
service S.

Int. J. Advanced Networking and Applications 1537
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

1
0 0

0 0
(([1,]), ([1,])) (1) [] []()(1)TV b b

r s
d L C b L Z b n P T r P T s s r θ−

≥ ≥ +

 − + = = − − 
 

∑ ∑
∼ ∼

II. METHODOLOGY

A. Service Composition
The service-oriented computing environment and
supported infrastructure serves the high quality
services and Orchestrated and standardized Web
service technologies provide a promising solution for
the integration of business applications that are using
different technologies, this build the platform where
software can be exposed as a service and business
domain can be exposed as a services and there is no
need to redevelop same business function in other
projects, this is purely new value-added services
that can leverage legacy application and

infrastructure services. As the Organization are
acquired and merged there is high demand to use
each other IT & Business Capabilities so there is
growing interest in the development of ad-hoc
service composition in the areas of business domains
such as Healthcare, Telecommunication, Insurance
and Financial systems, as well as in web & game
based rich multimedia applications. As we
experience the web service growth that provides
more or less same functionality but differ in
performance attributes, quality service attributes, the
service composition comes under play to aid the
criteria of service selection and consumptions which
are highly critical for business domain support
model and adhere to non-functional SLA agreements
and business portfolio contracts.

Fig. 1. Architecture overview of the orchestration of web service and service fabric composition.

The business feature provider defines the composite
service model and defines the field structures as per
the client application requirement to suite the best
business outcome. Once the service is defined we
can use workflow language such as Webservice
business extraction language (WS-BPEL) or YAWL
Workflows or OWL-S to model the abstract service
layer for business composite services. UDDI is being
used to provide the service registry that is used to
locate the webservices and provide the semantic
services for functional use. Based on the outcome of
service selection or business or nonfunctional
candidate services are categorized for each business

feature, context aware QOS service selection and
consumption is based under the selection criteria and
context aware QoS and service contracts. Lets take

business webservices that are defined by ()f x
�

and
()g x
�

functions on subset of n
� .

We say ()f x
�

 is (()O g x
�

 as x → ∞
�

 if and only if

0C M∃ ∃ > such that
() ()f x C g x≤
� �

 for all x
�

, for
example below statement

2 3(,) (,)f n m n m O n m= + + as ,n m→∞
asserts that there exist constants C and M such that

Int. J. Advanced Networking and Applications 1538
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

, : (,) (),n m M g n m C n m∀ > ≤ +
where (,)g n m is defined by

2 3(,) (,)f n m n m g n m= + +

Note that this definition allows all of the service
attributes of x

�

to increase to infinity. In particular the
statement

(,) ()mf n m O n= as ,n m → ∞
(i.e., (...)C M n m∃ ∃ ∀ ∀) is quite different from

: (,) ()mm f n m O n∀ = as ,n m → ∞
(i.e., (...)m C M n∀ ∃ ∃ ∀)

Above illustration express the service attributes that
can be n- times large in production environment
which can be supported by high scale current
available infrastructure but there is always a limit in
computational systems to accept the payload and
provide the performance results.

B. QoS Contraints and Distribution of service
component in Extended Enterprise Architecture

End users specify their QoS requirements, such as
Average request and response time,
throughput/bandwidth, maximum computational and
resource usage cost. Based on above said QoS
criteria users consume candidate services but
internally services are orchestrated wrt business
features and tasks oriented workflow and each
service component maintains the stack of context
and contract aware QoS with calling functions/
services. Selecting the optimal service from the
service registry for each component function is
nontrival as the matrix of service composition could
be very large. This request and response service
scenario need to be solved better available solution,
in this paper this problem is looked from the point of
combinatorial optimization that consists of finding
an optimal service from a finite set of available
service objects in the service registry. As the dataset
could be very large and exhaustive search might not
be feasible to perform and could lead into
performance barrier. It operates on the service
business function domain of those optimization
problems ,in which the set of services of adequate
service QoS is discrete or can be reduced to discrete,
and this will make it easier to search best possible
service.

C. Mathematical framerwork of Service
Orchestration

Below listed mathematical proof explains the
distribution of services and best possible service
solution wrt contractual QoS Constraints.

 The marginal distribution of services cycle counts
provides a formula for the service component joint

distribution of the cycle counts ,n
jC we find the

service component distribution of
n
jC using a

combinatorial approach combined with the
inclusion-exclusion formula.

Lemma 1.1. For 1 ,j n≤ ≤
 [/]

()

0
[] (1) (1.1)

! !

k ln j k
n l

j
l

j jP C k
k l

− −−

=
= = −∑

Proof. Consider the available registered Services
in UDDI Registry set I of all possible cycles of
length ,j formed with business component elements
chosen from set of available service components
{ }1,2,... ,n so that []/j jI n= . For each ,Iα ∈

consider the �property� Gα of having ;α that is,

Gα is the set of permutations nSπ∈ such that α is
one of the component cycles of .π We then have

()!,G n jα = − since the elements of { }1,2,...,n
not in α must be permuted among themselves. To
use the inclusion-exclusion formula we need to
calculate the term ,rS which is the sum of the
probabilities of the r -fold intersection of properties,
summing over all sets of r distinct properties. There
are two cases to consider. If the r properties are
indexed by r cycles having no business elements in
common, then the intersection specifies how rj
elements are moved by the permutation, and there
are ()!1()n rj rj n− ≤ permutations in the

intersection. There are [] / (!)rj rn j r such
intersections. For the other case, some two distinct
properties name some element in common, so no
permutation can have both these properties, and the
r -fold intersection is empty. Thus

[] 1 1()!1() 1()
! ! !

rj

r r r
nS n rj rj n rj n
j r n j r

= − ≤ × = ≤

Finally, the inclusion-exclusion service composition
series for the number of permutations having exactly
k properties is

,
0

(1)l
k l

l

k l
S

l +
≥

+ 
−  

 
∑

Int. J. Advanced Networking and Applications 1539
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

Which simplifies to (1.1) Returning to the original
hat-check problem, we substitute j=1 in (1.1) to
obtain the distribution of the number of fixed points
of a random permutation. For 0,1,..., ,k n=

()
1

0

1 1[] (1) , (1.2)
! !

n k
n l

l
P C k

k l

−

=

= = −∑

and the moments of ()
1

nC follow from (1.2) with
1.j = In particular, for 2,n ≥ the mean and

variance of ()
1

nC are both equal to 1. The joint

distribution of webservices () ()
1(,...,)n n

bC C for any
1 b n≤ ≤ has an expression similar to (1.2); this too
can be derived by inclusion-exclusion. For any

1(,...,) b
bc c c += ∈ � with ,im ic=∑

1

() ()
1

...

01 1

[(,...,)]

1 1 1 1(1) (1.3)
! !

i i

b

i

n n
b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l
+ +

≥= =
≤ −

=

     = −    
     

∑

∑∏ ∏

The service workflow joint moments of the first b
counts () ()

1 ,...,n n
bC C can be obtained directly from

(1.2) and (1.3) by setting 1 ... 0b nm m+ = = =

The limit distribution of service cycle counts
follows immediately from Lemma 1.1 that for each
fixed ,j as ,n → ∞

() 1/[] , 0,1,2,...,
!

k
n j

j
jP C k e k
k

−
−= → =

So that ()n
jC converges in distribution to a random

variable jZ having a Poisson distribution with mean

1/ ;j we use the notation ()n
j d jC Z→ where

(1/)j oZ P j∼ to describe this. Infact, the limit
random variables are independent.

Above listed theorem explicit defines the best
distribution of service components when the payload
is large and also to adhere with QoS constraints and
provide optimal service performance.

Fig. 2. Illustrates the service orchestration and
composition in enterprise architecture and poisson

Int. J. Advanced Networking and Applications 1540
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

distribution and error rate is approximation is
calculated.

Service Localization and Service Selection
Strategy. The service local and global selection
approach is especially useful for enterprise wide
distributed system environments where central
service bus maintains QoS administration and
management and groups of candidate Web services
are managed by distributed service hubs and stack of
composite service portfolio. The objective function
is to select optimal service from available group of
service candidates and the services are independent
in cluster of service offering hub. Using a
Combinatorial resource attributes and features, the
values of the different QoS criteria are mapped to a
specified resource attribute and the service with
optimal capability is selected. This approach is very
efficient in terms of CPU cycle and resource usage,
as the payload and response time complexity of the
local optimization approach is O(l), where l is the
number of service candidates in each group. Even if
the approach is useful in decentralized environments,
local selection strategy is not suitable for QoS-based
service composition, with end-to-end constraints
(e.g., maximum total price), since such global
constraints cannot be verified locally.

Global Optimization. The global optimization
approach was put forward as a solution to the QoS-
aware service composition problem [Zeng et al.
2003, 2004; Ardagna and Pernici 2005; Ardagna and
Pernici 2007; Kritikos and Plexousakis 2009]. This
approach aims at solving the problem on the
composite service level. The work of Zeng et al.
[2003, 2004] focuses on dynamic and quality-driven
selection of services. The authors use global
planning to find the best service components for the
composition. They use mixed integer programming
techniques [Nemhauser and Wolsey 1988] (MIP) to
find the optimal selection of component services.
Similar to this approach Ardagna et al. [2005, 2007]
extend the linear programming model to include
local constraints. In their model, global constraints
are specified by the end-user on the composition
level, while local constraints can be specified by the
designer of the composition on the component
services� level. Unlike this approach, our proposed
solution decomposes all end-users� global
constraints into local constraints. Our solution can
also easily handle local constraints given by the
designer of the composition. Another difference
between the two approaches is that, in our approach,
mixed-integer programming is applied for the
decomposition of the constraints and not for the

selection of the services. As we discuss later in
Section 4 and Section 5, the number of random
variables in our model is much smaller than the
number of random variables in the other approach,
which makes our model more efficient in terms of
computation time. Kritikos and Plexousakis [2009]
claim that mixed-integer programming should be
used as a matchmaking technique instead of
constrained programming (CP) and provide
experimental results proving it. Zhai et al. [2009]
propose a solution for repairing failed service
compositions by replacing the failed services only
and reconfiguring the composition in a way that still
meets the users� end-to-end QoS requirements. The
reconfiguration of the composition and the
suggestion of new services is based on MIP.
Generally, MIP methods are very effective when the
size of the problem is small. However, these
methods suffer from poor scalability due to the
exponential time complexity of the applied search
algorithms [Maros 2003]. Already in larger
enterprises and even more in open service
infrastructures with a few thousand services, the
response time for a service composition request
could already be out of the real-time requirements.

Heuristic Solutions. As discussed earlier, the
problem of QoS-aware service selection can be
modeled as a multi-dimensional multiple-choice
knapsack problem (MMKP). In the MMKP problem,
a set of groups of items, where each item has a profit
value and consumes some resources, exist. The goal
of this problem is to select exactly one item from
each group such that the total profit value is
maximized under some constraints on total resource
consumption. The groups and items in this problem
correspond to the service classes and the candidate
services in theWeb service scenario, respectively.
The profit value of an item corresponds to the utility
value of a Web service and the constraints on the
resource consumption correspond to the QoS
constraints. There exist a number of heuristics in the
literature for solving the knapsack problem in
general and the MMKP variant of this problem in
particular. In Khan [1998] a heuristic HEU for
solving the MMKP was presented. HEU uses a
measurement called aggregate resource consumption
to decide which item from each group should be
upgraded in each round of selection. In Akbar et al.
[2001] a modified version of HEU, M-HEU called
was presented, where a preprocessing step to find a
feasible solution and a postprocessing step to
improve the total value of the solution with one
upgrade (i.e., item selection that increases the total
profit value) followed by one or more downgrades

Int. J. Advanced Networking and Applications 1541
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

(i.e., item selection that decreases the total profit
value) were added. In Akbar et al. [2006] the authors
propose another heuristic, C-HEU, for solving the
MMKP problem and evaluating its performance and
optimality against several heuristics, including the
M-HEU algorithm. The results of their evaluation
show that C-HEU outperforms MHEU in terms of
computation time. However, the experiments also
show that M-HEU produces the nearest to the
optimal solution among all the heuristics,while the
optimality of C-HEU decreases as the number of
items in each group increases. Furthermore, the
results show that the C-HEU algorithm performs
better in systems where the objective value to be
maximized (i.e., the utility value in the Web service
scenario) is not proportional to the resource
requirements (i.e., the QoS values of Web services).
Since the utility value of a given Web service is
proportional to the QoS level of the service, the C-
HEU algorithm is not applicable to the QoS-aware
service selection problem. A modified version of the
M-HEU algorithm, called WS-HEU, designed for
the QoSaware service selection problem was
proposed in Yu et al. [2007]. The authors propose
two models for the QoS-based service composition
problem: (1) a combinatorial model and (2) a graph
model. A heuristic algorithm is introduced for each
model: the WSHEU algorithm for the combinatorial
model and the MCSP-K for the graph model. The
time complexity of WS-HEU is polynomial, whereas
the complexity of MCSP-K is exponential. Despite
the significant improvement of these algorithms
compared to exact solutions, both algorithms do not
scale with respect to an increasing number of Web
services and remain out of the real-time
requirements. In our experimental evaluation, which
we present in Section 5.2, we compare our hybrid
approach against the WS-HEU algorithm. The
results indicate the the hybrid approach outperforms
the WS-HEU. Moreover, the WS-HEU algorithm is
not suitable for the distributed setting of Web
services. This is due to the fact that WS-HEU
(following the originalM-HEU algorithm) starts with
a preprocessing step for finding an initial service
combination that satisfies all constraints but is not
necessarily the best solution, and improves this
solution in several rounds of upgrades and
downgrades of one of the selected component
services. Applying this algorithm in a distributed
setting where the QoS data of the different service
classes is managed by distributed service brokers
would cause very high communication costs among
the brokers to find the best composition. The hybrid
approach, we propose in this article solves the

composition problem more efficiently and fits the
distributed environment of Web services well.

D. Constraints and Criteria for Quality of Services
In our study we consider quantitative nonfunctional
properties of Web services, which can be used to
describe the quality criteria of a Web service [Zeng
et al. 2003; Liu et al. 2004]. These can include
generic QoS attributes like response time,
availability, price, reputation and so on, as well as
domain-specific QoS attributes like bandwidth for
multimedia Web services as long as these attributes
can be quantified and represented by real
numbers.We use the vector Qs = {q1(s), . . . , qr(s)}
to represent the r QoS attributes of service s, where
the function qi(s) determines the value of the ith
quality attribute of s. The values of these QoS
attributes can either be collected from service
providers directly (e.g., price), recorded from
previous execution monitoring (e.g., response time)
or from user feedbacks (e.g., reputation) [Liu et al.
2004]. The set of QoS attributes can be divided into
two subsets: positive and negative QoS attributes.
The values of positive attributes need to be
maximized (e.g., throughput and availability),
whereas the values of negative attributes need to be
minimized (e.g., price and response time). For the
sake of simplicity, in this article we consider only
negative ares (positive attributes can be easily
transformed into negative overs by multiplying their
values by −1).

E. QoS Computation of Composite Services
In our previous work [Alrifai and Risse 2009] we
focused on sequential compositions. In the present
work, we extend the QoS computation model to
support nonsequential compositions. More
specifically, in this study we consider the following
four elementary composition constructs, which can
be used for building more complex compositions.
(1) Sequential. A sequence of services {s1, . . . , sn}
are executed in a strict sequential order one after
another.
(2) Loop. A block of one or more services is
executed repeatedly up to a maximum number of k
executions. The aggregated QoS values of a loop
construct is computed based on the worst-case
scenario, where the number of iterations equals k.
(3) Parallel (and split/and join). Multiple services
{s1, . . . , sn} are executed concurrently and merged
synchronization.
(4) Conditional (exclusive split/exclusive join). A set
of services {s1, . . . , sn} are associated with a logical

Int. J. Advanced Networking and Applications 1542
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

condition, which is evaluated at runtime and, based
on its outcome, one service is executed. The
estimated QoS values of a conditional construct are
the worst values of the services {s1, . . . , sn}. For
example, the estimated execution price of the
conditional construct is computed as the price of the
most expensive service among the services {s1, . . . ,
sn}. The QoS vector for a composite service CS with
CS = {s1, . . . , sn} is defined as QCS = {q1(CS), . . .
, qr (CS)}, where qi(CS) is the estimated end-to-end
value of the ith QoS attribute. The value of qi(CS) is
computed by aggregating the QoS values of the
component services {s1, . . . , sn}. Depending on the
QoS attribute and the composition pattern, there can
be three different types of aggregation relations: (1)
summation, (2) product or (3) minimum/maximum
relations. Table I shows examples of such
aggregation functions. In this example, we consider
four different QoS attributes.
�Response Time: is the average execution time of
the service and is measured by the time between
sending a request and receiving a response.
�Price: is the amount of money the requester has to
pay for using the service.
�Availability: is the probability that the service is
accessible. This is usually measured by the
percentage of the service up-time in a given period.
The aggregated availability value of a composition is

measured by the probability that all composed
services are available at execution time, which is
usually computed by the product of the individual
probabilities.
�Throughput: is the number of requests the service
can process per second. The overall throughput of a
composition is then determined by the lowest
throughput value of the composed services.

The aggregation function of each of these attributes
is shown for each of the four composition constructs
mentioned above. Notice that in the conditional
construct, only one branch is executed at runtime,
which is not known a priori. Therefore, we consider
the worst-case scenario for estimating the QoS value
of the conditional construct. For example, the
estimated response time (or price) of a conditional
construct that consists of n branches (such as the one
shown in Figure 2) is the maximum response time
(or price) among the n component services, that is,
maxnj =1 q(sj). Similarly, for the availability (or
throughput) attribute, we use the minimum value
among the nservices,that is, minnj =1 q(sj).

[/]
()

0

[] (1)
! !

k ln j k
n l

j
l

j jP C k
k l

− −−

=

= = −∑
[] 1 1()!1() 1()

! ! !

rj

r r r

nS n rj rj n rj n
j r n j r

= − ≤ × = ≤

1 1

1
exp [log(1)]

i

d i d i d
n

θ θ θ− −

≥

 + − 
 
∑

0
0 0

[][] 1
[]
bn

b
r n

P T n rP T r
P T n≥ +

 = −= − = 
∑

{
}

1
0

0

7,8

1
(

(
[1,

]),
(

[1,
]))

(
1)

1
2

(
,

),

TV
b

b
d

L
C

b
L

Z
b

n
E

T
ET

nb

θ

ε

−
−

+
−

−

≤

Fig. 1. Architecture overview of the orchestration of web service and service fabric composition.

Int. J. Advanced Networking and Applications 1543
Volume:04 Issue:02 Pages: 1534-1543 (2012) ISSN : 0975-0290.

III. REFERENCES

[1]. S. Abiteboul, R. Hull, and V. Vianu.

Foundations of Databases. Addison-Wesley,
995.

[2]. S. Abiteboul and V. Vianu. Datalog
extensions for database queries and updates.
J. Comput. Syst. Sci., 43(1):62�124, 1991.

[3]. A. Acciarri, D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, M. Palmieri, and
R. Rosati. QuOnto: Querying ontologies. In
Proc. AAAI-2005, pp. 1670�1671, 2005.

[4]. H. Andr´eka, I. N´emeti, and J. van
Benthem. Modal languages and bounded
fragments of predicate logic. J. Phil. Log.,
27(3):217�274, 1998.

[5]. R. Angles and C. Gutierrez. The expressive
power of SPARQL. In Proc. ISWC- 2008,
pp. 114�129, 2008.

[6]. G. Antoniou. Non-monotonic rule systems
on top of ontology layers. In Proc. ISWC-
2002, pp. 394�398, 2002.

[7]. K. R. Apt, H. Blair, and A. Walker. Towards
a theory of declarative knowledge. In J.
Minker, editor, Foundations of Deductive
Databases and Logic Programming, pp. 89�
148. Morgan Kaufmann, 1988.

[8]. A. Artale, D. Calvanese, R. Kontchakov, and
M. Zakharyaschev. DL-Lite in the light of
first-order logic. In Proc. AAAI-2007, pp.
361�366, 2007. 72

[9]. A. Artale, D. Calvanese, R. Kontchakov, and
M. Zakharyaschev. The DL-Lite family and
relations. J. Artif. Intell. Res., 36:1�69,
2009.

[10]. F. Baader. Least common subsumers and
most specific concepts in a description logic
with existential restrictions and
terminological cycles. In Proc. IJCAI-2003,
pp. 319�324, 2003.

[11]. F. Baader, S. Brandt, and C. Lutz. Pushing
the EL envelope. In Proc. IJCAI-2005, pp.
364�369, 2005.

[12]. F. Baader, C. Lutz, and B. Suntisrivaraporn.
CEL � A polynomial-time reasoned for life
science ontologies. In Proc. IJCAR-2006,
pp. 287�291, 2006.

[13]. J.-F. Baget, M. Lecl`ere, M.-L. Mugnier, and
E. Salvat. On rules with existential variables:
Walking the decidability line. Artif. Intell.,
175(9/10):1620�1654, 2011.

[14]. J.-F. Baget, M.-L. Mugnier, S. Rudolph, and
M. Thomazo. Walking the complexity lines

for generalized guarded existential rules. In
Proc. IJCAI-2011, pp. 712�717, 2011.

[15]. V. Barany, G. Gottlob, and M. Otto.
Querying the guarded fragment. In Proc.
LICS- 10, pp. 1�10, 2010. Full paper
available from the authors.

[16]. C. Beeri and M. Y. Vardi. The implication
problem for data dependencies. In Proc.
ICALP-1981, pp. 73�85, 1981.

[17]. C. Beeri and M. Y. Vardi. A proof procedure
for data dependencies. J. ACM, 31(4):718�
741, 1984.

[18]. B. Bishop, A. Kiryakov, D. Ognyanoff, I.
Peikov, Z. Tashev and R. Velkov. OWLIM:
A family of scalable semantic repositories. J.
of Web Semantics, 2(1):33�42, 2011.

[19]. D. Brickley and R. V. Guha. RDF
Vocabulary Description Language 1.0: RDF
Schema, 2004. W3C Recommendation (10
Feb. 2004). http://www.w3.org/TR/rdf-
schema/.

[20]. J. D. Bruijn, T. Eiter, A. Polleres, and H.
Tompits. Embedding non-ground logic
programs into autoepistemic logic for
knowledge base combination. In Proc.
IJCAI-2007, pp. 304�309, 2007.

[21]. L. Cabibbo. The expressive power of
stratified logic programs with value
invention.Inf. Comput., 147(1):22�56, 1998.

[22]. A. Cal`õ, D. Calvanese, G. De Giacomo, and
M. Lenzerini. Accessing data integration
systems through conceptual schemas. In
Proc. ER-2001, pp. 270�284, 2001.

[23]. A. Cal`õ, G. Gottlob, and M. Kifer. Taming
the infinite chase: Query answering under
expressive relational constraints. In Proc.
KR-2008, pp. 70�80, 2008.

[24]. A. Cal`õ, G. Gottlob, and T. Lukasiewicz. A
general Datalog-based framework for
tractable query answering over ontologies.
In Proc. PODS-2009, pp. 77�86, 2009.

[25]. A. Cal`õ, G. Gottlob, and A. Pieris. Tractable
query answering over conceptual schemata.
In Proc. ER-2009, pp. 175�190, 2009.

[26]. A. Cal`õ, G. Gottlob, and A. Pieris.
Advanced processing for ontological
queries. Proc. VLDB-10, 3(1):554�565,
2010.

[27]. A. Cal`õ, G. Gottlob, and A. Pieris. Query
answering under expressive Entity-
Relationship schemata. In Proc. ER-10, pp.
347�361, 2010.

